skip to main content


Search for: All records

Creators/Authors contains: "Kravitz, Ben"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021. This discrepancy can be reconciled by the observed positive-to-negative phase shift of Interdecadal Pacific Oscillation (IPO) and the negative-to-positive phase shift of Atlantic Multidecadal Oscillation (AMO), which increase and reduce Arctic ARs over the Atlantic and Pacific sectors, respectively. Removing the influence of the IPO and AMO can reduce the projection uncertainties in near-future Arctic AR trends by about 24%, which is important for constraining projection of Arctic warming and the timing of an ice-free Arctic.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    Regional geoengineering, by reflecting sunlight over a very limited spatial domain, might be considered as a means to target specific regional impacts of climate change. One of the obvious concerns raised by such approaches is the extent to which the resulting effects would be detectable well beyond the targeted region (e.g. in neighbouring countries). A few studies have explored this question for targeted regions that are still comparatively large. We consider idealized simulations with increased ocean albedo over relatively small domains; the Gulf of Mexico (0.23% of Earth's surface) and over the Australian Great Barrier Reef (0.07%), both with negligible global radiative forcing. Applied over these very small domains, the only statistically significant non-local changes we find are some limited reduction on summer precipitation in Florida in the Gulf of Mexico case (adjacent to the targeted region). The lack of transboundary effects suggests that governance needs for such targeted interventions are quite distinct from those for more global sunlight reflection.

     
    more » « less
  3. Abstract. Despite offsetting global mean surface temperature, various studies demonstrated that stratospheric aerosol injection (SAI) could influence the recovery of stratospheric ozone and have important impacts on stratospheric and tropospheric circulation, thereby potentially playing an important role in modulating regional and seasonal climate variability. However, so far, most of the assessments of such an approach have come from climate model simulations in which SO2 is injected only in a single location or a set of locations. Here we use CESM2-WACCM6 SAI simulations under a comprehensive set of SAI strategies achieving the same global mean surface temperature with different locations and/or timing of injections, namely an equatorial injection, an annual injection of equal amounts of SO2 at 15∘ N and 15∘ S, an annual injection of equal amounts of SO2 at 30∘ N and 30∘ S, and a polar strategy injecting SO2 at 60∘ N and 60∘ S only in spring in each hemisphere. We demonstrate that despite achieving the same global mean surface temperature, the different strategies result in contrastingly different magnitudes of the aerosol-induced lower stratospheric warming, stratospheric moistening, strengthening of stratospheric polar jets in both hemispheres, and changes in the speed of the residual circulation. These impacts tend to maximise under the equatorial injection strategy and become smaller as the aerosols are injected away from the Equator into the subtropics and higher latitudes. In conjunction with the differences in direct radiative impacts at the surface, these different stratospheric changes drive different impacts on the extratropical modes of variability (Northern and Southern Annular modes), including important consequences on the northern winter surface climate, and on the intensity of tropical tropospheric Walker and Hadley circulations, which drive tropical precipitation patterns. Finally, we demonstrate that the choice of injection strategy also plays a first-order role in the future evolution of stratospheric ozone under SAI throughout the globe. Overall, our results contribute to an increased understanding of the fine interplay of various radiative, dynamical, and chemical processes driving the atmospheric circulation and ozone response to SAI and lay the foundation for designing an optimal SAI strategy that could form a basis of future multi-model intercomparisons.

     
    more » « less
  4. Solar geoengineering, or deliberate climate modification, has been receiving increased attention in recent years. Given the far-reaching consequences of any potential solar geoengineering deployments, it is prudent to identify inherent biases, blind spots, and other potential issues at all stages of the research process. Here we articulate a feminist science-based framework to concretely describe how solar geoengineering researchers can be more inclusive of different perspectives and potentially contradictory conclusions, in the process illuminating potential implicit bias and enhancing the conclusions that can be gained from their studies. Importantly, this framework is an adoptable method of practice that can be refined, with the aim of conducting better research in solar geoengineering. As an illustration, we retrospectively apply this framework to a well-read solar geoengineering study (also led by the first author of this study), improving transparency by revealing its implicit values, conclusions made from its evidence base, and the methodologies that study pursues. We conclude with a set of recommendations for the geoengineering research community whereby more inclusive research can become a regular part of practice. Throughout this process, we illustrate how feminist science scholars can use this approach to study climate modeling.

     
    more » « less
  5. Purpose Three Coupled Model Intercomparison Project Phase 5 models involved in the G4 experiment of the Geoengineering Model Inter-comparison Project (GeoMIP) project were used to investigate the impact of stratospheric aerosol injection (SAI) on the mean surface air temperature and precipitation extremes in Africa. Design/methodology/approach This impact was examined under G4 and Representative Concentration Pathway (RCP) 4.5 scenarios on the total precipitation, the number of rainy days (RR1) and of days with heavy rainfall (R20 mm), the rainfall intensity (SDII), the maximum length of consecutive wet (CWD) and dry (CDD) days and on the maximum rainfall in five consecutive days (Rx5day) across four regions: Western Africa (WAF), Eastern Africa (EAF), Northern Africa and Southern Africa (SAF). Findings During the 50 years (2020–2069) of SAI, mean continental warming is −0.40°C lower in G4 than under RCP4.5. During the post-injection period (2070–2090), the temperature continues to increase, but at a lower rate (−0.19°C) than in RCP4.5. During SAI, annual rainfall in G4 is significantly greater than in RCP4.5 over the high latitudes (especially over SAF) and lower over the tropics. The termination of SAI leads to a significant increase of rainfall over Sahel and EAF and a decrease over SAF and Guinea Coast (WAF). Practical implications Compared to RCP4.5, SAI will contribute to reducing significantly regional warming but with a significant decrease of rainfall in the tropics where rainfed agriculture account for a large part of the economies. After the SAI period, the risk of drought over the extratropical regions (especially in SAF) will be mitigated, while the risk of floods will be exacerbated in the Central Sahel. Originality/value To meet the Paris Agreement, African countries will implement mitigation measures to contribute to keep the surface air temperature below 2°C. Geoengineering with SAI is suggested as an option to meet this challenge, but its implication on the African climate system needs a deep investigation in the aim to understand the impacts on temperature and precipitation extremes. To the best of the authors’ knowledge, this study is the first to investigate the potential impact of SAI using the G4 experiment of GeoMIP on temperature and precipitation extremes of the African continent. 
    more » « less
  6. Abstract. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinating framework, started in 2010, that includes a series of standardized climate model experiments aimed at understanding the physical processes and projected impacts of solar geoengineering. Numerous experiments have been conducted, and numerous more have been proposed as “test-bed” experiments, spanning a variety of geoengineering techniques aimed at modifying the planetary radiation budget: stratospheric aerosol injection, marine cloud brightening, surface albedo modification, cirrus cloud thinning, and sunshade mirrors. To date, more than 100 studies have been published that used results from GeoMIP simulations. Here we provide a critical assessment of GeoMIP and its experiments. We discuss its successes and missed opportunities, for instance in terms of which experiments elicited more interest from the scientific community and which did not, and the potential reasons why that happened. We also discuss the knowledge that GeoMIP has contributed to the field of geoengineering research and climate science as a whole: what have we learned in terms of intermodel differences, robustness of the projected outcomes for specific geoengineering methods, and future areas of model development that would be necessary in the future? We also offer multiple examples of cases where GeoMIP experiments were fundamental for international assessments of climate change. Finally, we provide a series of recommendations, regarding both future experiments and more general activities, with the goal of continuously deepening our understanding of the effects of potential geoengineering approaches and reducing uncertainties in climate outcomes, important for assessing wider impacts on societies and ecosystems. In doing so, we refine the purpose of GeoMIP and outline a series of criteria whereby GeoMIP can best serve its participants, stakeholders, and the broader science community. 
    more » « less
  7. Abstract Stratospheric aerosol geoengineering has been proposed as a potential solution to reduce climate change and its impacts. Here, we explore the responses of the Hadley circulation (HC) intensity and the intertropical convergence zone (ITCZ) using the strategic stratospheric aerosol geoengineering, in which sulfur dioxide was injected into the stratosphere at four different locations to maintain the global-mean surface temperature and the interhemispheric and equator-to-pole temperature gradients at present-day values (baseline). Simulations show that, relative to the baseline, strategic stratospheric aerosol geoengineering generally maintains northern winter December–January–February (DJF) HC intensity under RCP8.5, while it overcompensates for the greenhouse gas (GHG)-forced southern winter June–July–August (JJA) HC intensity increase, producing a 3.5 ± 0.4% weakening. The residual change of southern HC intensity in JJA is mainly associated with stratospheric heating and tropospheric temperature response due to enhanced stratospheric aerosol concentrations. Geoengineering overcompensates for the GHG-driven northward ITCZ shifts, producing 0.7° ± 0.1° and 0.2° ± 0.1° latitude southward migrations in JJA and DJF, respectively relative to the baseline. These migrations are affected by tropical interhemispheric temperature differences both at the surface and in the free troposphere. Further strategies for reducing the residual change of HC intensity and ITCZ shifts under stratospheric aerosol geoengineering could involve minimizing stratospheric heating and restoring and preserving the present-day tropical tropospheric interhemispheric temperature differences. 
    more » « less
  8. Abstract. Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide (SO2) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur emissions are located at the surface or in the troposphere in the form of carbonyl sulfide (COS) gas. There are two time-dependent chemistry–climate model experiments designed from the years 2021 to 2055, assuming a 40 Tg-Syr-1 artificial global flux of COS, which is geographically distributed following the present-day anthropogenic COS surface emissions (SG-COS-SRF) or a 6 Tg-Syr-1 injection of COS in the tropical upper troposphere (SG-COS-TTL). The budget of COS and sulfur species is discussed, as are the effects of both SG-COS strategies on the stratospheric sulfate aerosol optical depth (∼Δτ=0.080 in the years 2046–2055), aerosol effective radius (0.46 µm), surface SOx deposition (+8.9 % for SG-COS-SRF; +3.3 % for SG-COS-TTL), and tropopause radiative forcing (RF; ∼-1.5 W m−2 in all-sky conditions in both SG-COS experiments). Indirect effects on ozone, methane and stratospheric water vapour are also considered, along with the COS direct contribution. According to our model results, the resulting net RF is −1.3 W m−2, for SG-COS-SRF, and −1.5 W m−2, for SG-COS-TTL, and it is comparable to the corresponding RF of −1.7 W m−2 obtained with a sustained injection of 4 Tg-Syr-1 in the tropical lower stratosphere in the form of SO2 (SG-SO2, which is able to produce a comparable increase of the sulfate aerosol optical depth). Significant changes in the stratospheric ozone response are found in both SG-COS experiments with respect to SG-SO2 (∼5 DU versus +1.4 DU globally). According to the model results, the resulting ultraviolet B (UVB) perturbation at the surface accounts for −4.3 % as a global and annual average (versus −2.4 % in the SG-SO2 case), with a springtime Antarctic decrease of −2.7 % (versus a +5.8 % increase in the SG-SO2 experiment). Overall, we find that an increase in COS emissions may be feasible and produce a more latitudinally uniform forcing without the need for the deployment of stratospheric aircraft. However, our assumption that the rate of COS uptake by soils and plants does not vary with increasing COS concentrations will need to be investigated in future work, and more studies are needed on the prolonged exposure effects to higher COS values in humans and ecosystems. 
    more » « less
  9. Abstract

    Stratospheric aerosol injection (SAI) is a prospective climate intervention technology that would seek to abate climate change by deflecting back into space a small fraction of the incoming solar radiation. While most consideration given to SAI assumes a global intervention, this paper considers an alternative scenario whereby SAI might be deployed only in the subpolar regions. Subpolar deployment would quickly envelope the poles as well and could arrest or reverse ice and permafrost melt at high latitudes. This would yield global benefit by retarding sea level rise. Given that effective SAI deployment could be achieved at much lower altitudes in these regions than would be required in the tropics, it is commonly assumed that subpolar deployment would present fewer aeronautical challenges. An SAI deployment intended to reduce average surface temperatures in both the Arctic and Antarctic regions by 2 °C is deemed here to be feasible at relatively low cost with conventional technologies. However, we do not find that such a deployment could be undertaken with a small fleet of pre-existing aircraft, nor that relegating such a program to these sparsely populated regions would obviate the myriad governance challenges that would confront any such deployment. Nevertheless, given its feasibility and potential global benefit, the prospect of subpolar-focused SAI warrants greater attention.

     
    more » « less